Source code for neuroconv.datainterfaces.behavior.sleap.sleapdatainterface
from pathlib import Path
import numpy as np
from pydantic import FilePath, validate_call
from pynwb.file import NWBFile
from .sleap_utils import extract_timestamps
from ....basetemporalalignmentinterface import BaseTemporalAlignmentInterface
[docs]
class SLEAPInterface(BaseTemporalAlignmentInterface):
"""Data interface for SLEAP datasets."""
display_name = "SLEAP"
keywords = ("pose estimation", "tracking", "video")
associated_suffixes = (".slp", ".mp4")
info = "Interface for SLEAP pose estimation datasets."
[docs]
@classmethod
def get_source_schema(cls) -> dict:
source_schema = super().get_source_schema()
source_schema["properties"]["file_path"]["description"] = "Path to the .slp file (the output of sleap)"
source_schema["properties"]["video_file_path"][
"description"
] = "Path of the video for extracting timestamps (optional)."
return source_schema
@validate_call
def __init__(
self,
file_path: FilePath,
video_file_path: FilePath | None = None,
verbose: bool = False,
frames_per_second: float | None = None,
):
"""
Interface for writing sleap .slp files to nwb using the sleap-io library.
Parameters
----------
file_path : FilePath
Path to the .slp file (the output of sleap)
verbose : bool, default: False
controls verbosity. ``True`` by default.
video_file_path : FilePath, optional
The file path of the video for extracting timestamps.
frames_per_second : float, optional
The frames per second (fps) or sampling rate of the video.
"""
# This import is to assure that the ndx_pose is in the global namespace when an pynwb.io object is created
# For more detail, see https://github.com/rly/ndx-pose/issues/36
import ndx_pose # noqa: F401
self.file_path = Path(file_path)
self.video_file_path = video_file_path
self.video_sample_rate = frames_per_second
self.verbose = verbose
self._timestamps = None
super().__init__(file_path=file_path)
[docs]
def get_original_timestamps(self) -> np.ndarray:
if self.video_file_path is None:
raise ValueError(
"Unable to fetch the original timestamps from the video! "
"Please specify 'video_file_path' when initializing the interface."
)
return np.array(extract_timestamps(self.video_file_path))
[docs]
def get_timestamps(self) -> np.ndarray:
timestamps = self._timestamps if self._timestamps is not None else self.get_original_timestamps()
return timestamps
[docs]
def set_aligned_timestamps(self, aligned_timestamps: np.ndarray):
self._timestamps = aligned_timestamps
[docs]
def add_to_nwbfile(
self,
nwbfile: NWBFile,
metadata: dict | None = None,
):
"""
Conversion from DLC output files to nwb. Derived from sleap-io library.
Parameters
----------
nwbfile: NWBFile
nwb file to which the recording information is to be added
metadata: dict
metadata info for constructing the nwb file (optional).
"""
pose_estimation_metadata = dict()
if self.video_file_path or self._timestamps:
video_timestamps = self.get_timestamps()
pose_estimation_metadata.update(video_timestamps=video_timestamps)
if self.video_sample_rate:
pose_estimation_metadata.update(video_sample_rate=self.video_sample_rate)
from sleap_io import load_slp
from sleap_io.io.nwb_predictions import append_nwb_data
labels = load_slp(self.file_path)
append_nwb_data(labels=labels, nwbfile=nwbfile, pose_estimation_metadata=pose_estimation_metadata)